Exponents

Operators

Brackets

Arrows

Relational

Sets

Greek

Advanced

\( a^{b}\)

\( a_{b}^{c}\)

\({a_{b}}^{c}\)

\(a_{b}\)

\(\sqrt{a}\)

\(\sqrt[b]{a}\)

\(\frac{a}{b}\)

\(\cfrac{a}{b}\)

\(+\)

\(-\)

\(\times\)

\(\div\)

\(\pm\)

\(\cdot\)

\(\amalg\)

\(\ast\)

\(\barwedge\)

\(\bigcirc\)

\(\bigodot\)

\(\bigoplus\)

\(\bigotimes\)

\(\bigsqcup\)

\(\bigstar\)

\(\bigtriangledown\)

\(\bigtriangleup\)

\(\blacklozenge\)

\(\blacksquare\)

\(\blacktriangle\)

\(\blacktriangledown\)

\(\bullet\)

\(\cap\)

\(\cup\)

\(\circ\)

\(\circledcirc\)

\(\dagger\)

\(\ddagger\)

\(\diamond\)

\(\dotplus\)

\(\lozenge\)

\(\mp\)

\(\ominus\)

\(\oplus\)

\(\oslash\)

\(\otimes\)

\(\setminus\)

\(\sqcap\)

\(\sqcup\)

\(\square\)

\(\star\)

\(\triangle\)

\(\triangledown\)

\(\triangleleft\)

\(\Cap\)

\(\Cup\)

\(\uplus\)

\(\vee\)

\(\veebar\)

\(\wedge\)

\(\wr\)

\(\therefore\)

\(\left ( a \right )\)

\(\left \| a \right \|\)

\(\left [ a \right ]\)

\(\left \{ a \right \}\)

\(\left \lceil a \right \rceil\)

\(\left \lfloor a \right \rfloor\)

\(\left ( a \right )\)

\(\vert a \vert\)

\(\leftarrow\)

\(\leftharpoondown\)

\(\leftharpoonup\)

\(\leftrightarrow\)

\(\leftrightharpoons\)

\(\mapsto\)

\(\rightarrow\)

\(\rightharpoondown\)

\(\rightharpoonup\)

\(\rightleftharpoons\)

\(\to\)

\(\Leftarrow\)

\(\Leftrightarrow\)

\(\Rightarrow\)

\(\overset{a}{\leftarrow}\)

\(\overset{a}{\rightarrow}\)

\(\approx \)

\(\asymp \)

\(\cong \)

\(\dashv \)

\(\doteq \)

\(= \)

\(\equiv \)

\(\frown \)

\(\geq \)

\(\geqslant \)

\(\gg \)

\(\gt \)

\(| \)

\(\leq \)

\(\leqslant \)

\(\ll \)

\(\lt \)

\(\models \)

\(\neq \)

\(\ngeqslant \)

\(\ngtr \)

\(\nleqslant \)

\(\nless \)

\(\not\equiv \)

\(\overset{\underset{\mathrm{def}}{}}{=} \)

\(\parallel \)

\(\perp \)

\(\prec \)

\(\preceq \)

\(\sim \)

\(\simeq \)

\(\smile \)

\(\succ \)

\(\succeq \)

\(\vdash\)

\(\in \)

\(\ni \)

\(\notin \)

\(\nsubseteq \)

\(\nsupseteq \)

\(\sqsubset \)

\(\sqsubseteq \)

\(\sqsupset \)

\(\sqsupseteq \)

\(\subset \)

\(\subseteq \)

\(\subseteqq \)

\(\supset \)

\(\supseteq \)

\(\supseteqq \)

\(\emptyset\)

\(\mathbb{N}\)

\(\mathbb{Z}\)

\(\mathbb{Q}\)

\(\mathbb{R}\)

\(\mathbb{C}\)

\(\alpha\)

\(\beta\)

\(\gamma\)

\(\delta\)

\(\epsilon\)

\(\zeta\)

\(\eta\)

\(\theta\)

\(\iota\)

\(\kappa\)

\(\lambda\)

\(\mu\)

\(\nu\)

\(\xi\)

\(\pi\)

\(\rho\)

\(\sigma\)

\(\tau\)

\(\upsilon\)

\(\phi\)

\(\chi\)

\(\psi\)

\(\omega\)

\(\Gamma\)

\(\Delta\)

\(\Theta\)

\(\Lambda\)

\(\Xi\)

\(\Pi\)

\(\Sigma\)

\(\Upsilon\)

\(\Phi\)

\(\Psi\)

\(\Omega\)

\((a)\)

\([a]\)

\(\lbrace{a}\rbrace\)

\(\frac{a+b}{c+d}\)

\(\vec{a}\)

\(\binom {a} {b}\)

\({a \brack b}\)

\({a \brace b}\)

\(\sin\)

\(\cos\)

\(\tan\)

\(\cot\)

\(\sec\)

\(\csc\)

\(\sinh\)

\(\cosh\)

\(\tanh\)

\(\coth\)

\(\bigcap {a}\)

\(\bigcap_{b}^{} a\)

\(\bigcup {a}\)

\(\bigcup_{b}^{} a\)

\(\coprod {a}\)

\(\coprod_{b}^{} a\)

\(\prod {a}\)

\(\prod_{b}^{} a\)

\(\sum_{a=1}^b\)

\(\sum_{b}^{} a\)

\(\sum {a}\)

\(\underset{a \to b}\lim\)

\(\int {a}\)

\(\int_{b}^{} a\)

\(\iint {a}\)

\(\iint_{b}^{} a\)

\(\int_{a}^{b}{c}\)

\(\iint_{a}^{b}{c}\)

\(\iiint_{a}^{b}{c}\)

\(\oint{a}\)

\(\oint_{b}^{} a\)

yes.option A is very correct,boys and joys rhytme

Option A is correct. Joys rhymes with Boys.